100个统计学与R语言学习资源汇总

本文分享了100个统计学和R语言学习资源,涵盖博客、电子书、课程及R包等多方面内容。

原文标题:100个统计学资源网站!

原文作者:数据派THU

冷月清谈:

这篇文章汇总了100个优秀的统计学和R语言学习资源,适合各水平的学习者。从个人主页、博客和社区到电子书、课程及R包等各个方面均有涉及,特别推荐了一些有用的链接和书籍。文章强调了一些资源的特性,比如访问某些网站需要科学上网或较好的英语能力。无论你是统计学新手还是进阶学习者,这些资源都能为你的学习提供帮助,尤其是有关注R语言的读者。同时,部分推荐的电子书和在线课程可以帮助学习者更深入地掌握统计学及其应用。

怜星夜思:

1、在学习R语言时,哪种学习资源最有效?
2、哪些统计学书籍值得推荐给初学者?
3、大家对“科学上网”有什么经验?

原文内容

图片
来源:pythonic生物人

本文约5200字,建议阅读10分钟

本文分享100个统计学和R语言学习资源网站。


简介


原文:统计学 & R学习资源

编辑:庄闪闪的R语言手册

作者:CoffeeCat[1]

转载于:Coffee学生物统计的地方[2]


注:有些链接需要科学上网/较硬的英文阅读能力才能愉快地体验知识/技术带来的快感。


1.个人主页、博客、社区、论坛


北大李东风[3] 

中科大张伟平[4]

谢益辉(人称谢大大)[5]:统计之都论坛[6]创始人(与之有关的统计之都[7])

统计学资源链接大全[8]:知名 统计系、统计学会、统计组织、统计软件、统计期刊的官网(该老师的主页[9])

斯坦福大学统计系:Trevor Hastie[10]、Jerome H. Friedman[11]、Rob Tibshirani[12]

顾凯[13]:统计分析师;R、SAS、医学统计博主

revolutionanalytics[14]:一个R社区(Revolution Analytics开发了Revolution R,后来被微软收购)

r-bloggers[15]:R博客

Statistics How To[16]:统计学与SPSS, Minitab, Excel

Statistical Modeling, Causal Inference, and Social Science[17]:哥大统计“统计建模,因果推论和社会科学”

Error Statistics Philosophy[18]:统计哲学家Deborah G. Mayo

Simply Statistics[19]:三位生物统计专家的Jeff Leek[20], Roger Peng[21], Rafa Irizarry[22]的博客

FLOWINGDATA[23]:分析、数据可视化(付费)

Statistics by Jim[24]:使统计更直观


2.电子书、课程


Library Genesis[25]:外文电子书大全。结合亚马逊[26]、Routledge[27](Chapman \& Hall/CRC Texts in Statistical Science[28]、Chapman \& Hall/CRC Biostatistics Series[29])、Springer[30](Springer Statistics[31])、Elsevier[32]、Oxford University Press[33](Probability \& Statistics[34])、Cambridge University Press[35](Statistics and probability[36])……几乎可以找到你想要的一切。


电子书From Bookdown[37]:


数据科学中的R语言[38]:非常全面的R教程

R语言忍者秘籍[39]:谢大大的R教程

现代统计图形[40]:谢大大R可视化的佳作

Statistics Handbook[41]:R语言统计分析小册子(有类似的中文的:薛毅老师的《统计建模与R软件》)

R for Data Science[42]:COPSS奖得主、RStudio首席科学家Hadley Wickham[43]的倾力之作,学习tidyverse[44]重要语法的不二之选

Advanced R[45]:Hadley Wickham[46]提高R语言编程技能(本书的习题解答[47])

R Graphics Cookbook[48]:R基础绘图圣经

Data Visualization with R[49]:R语言实战的作者的另一个作品

R Gallery Book[50]:The R Graph Gallery[51]的完整指南

Beyond Multiple Linear Regression[52]:回归分析的拓展:广义线性模型和分层模型

Applied longitudinal data analysis in brms and the tidyverse[53]:纵向数据分析

Interpretable Machine Learning[54]:可解释机器学习

现代应用统计与R语言[55]:顾名思义

R语言教程[56]:同上

统计计算[57]:同上

零基础学R语言[58]:同上

Rmd权威指南[59]:by谢大大

Rmd中文指南[60]:这本似乎还未完待续

blogdown[61]:谢大大用R写博客

bookdown[62]:谢大大用R写书


电子书、在线课程、教程


生物统计手册:Handbook of Biological Statistics[63] 以及它的R陪同:An R Companion for the Handbook of Biological Statistics[64]

部分免费的数据科学课程:DataCamp[65]、Dataquest[66]、Datanovia[67]

Biomedical Data Science[68]:生物医学数据科学

Introduction to Econometrics with R[69]:R语言计量经济学导论(量:第四声)

Forecasting: Principles and Practice (3rd ed)[70]:旨在全面介绍预测方法


以下两本是统计学习圣经:

An Introduction to Statistical Learning\(1 ed.\)[71]:ISLR第一版(2021年夏季出第二版:官网[72])

The Elements of Statistical Learning[73]:ESL官网


3.R Packages


Awesome R[74]:优秀的R包和资料

tidyverse[75]、tidymodels[76]:分别代表数据分析、统计模型的一套流程

ggplot2[77] & its 82 extensions[78]:可视化领域的少林

shiny[79]:交互、可视化、分析平台(它的画廊[80])

plotly[81]:可视化另一佳作

htmlwidgets for R[82]:126个HTML图形插件

R任务视图[83]包含了四十多个热门主题,每个主题下面都有几十个包供你选择

xaringan[84]:谢大大用R写ppt英文模板[85]、中文模板[86]

R数据集:R自带的datesets[87] package、更全的Rdatasets[88](不是package,只是含有dataset的package的信息)


4.Others


R官方文档[89]、R贡献文档[90]

timeline-of-statistics.pdf[91]:简明统计学史(by ASA)

RStudio的cheatsheet[92]:快速回顾一些R包的基本语法(支持邮件订阅;鼓励大家参与到该网址中的中文翻译项目;当然除了由RStudio发布的cheatsheet,还有其他机构也会发布,比如DataCamp的cheatsheet[93],其中还有Python的)


帮助自学:

UCB统计系推荐阅读清单[94]

ASA的统计学本科课程大纲[95]


阅读材料:

Statistical Science Conversations[96]:IMS的与一百多位统计学家的访谈专栏

How R Helps Airbnb Make the Most of its Data[97]

Why Is It Called That Way\?\! – Origin and Meaning of R Package Names[98]:一些R包名称的由来

Tidy Data[99]:by Hadley Wickham

未完待续.


参考资料


[1]
CoffeeCat: 
https://www.zhihu.com/people/CoffeeCat2000
[2]
Coffee学生物统计的地方: 
https://www.zhihu.com/column/c_1242033096192262144
[3]
北大李东风:
https://link.zhihu.com/?target=https%3A//www.math.pku.edu.cn/teachers/lidf/
[4]
中科大张伟平:
 https://link.zhihu.com/?target=http%3A//staff.ustc.edu.cn/~zwp/teach.htm
[5]
谢益辉:
https://link.zhihu.com/?target=https%3A//yihui.org/
[6]
统计之都论坛:
https://link.zhihu.com/?target=https%3A//d.cosx.org/
[7]
统计之都:
https://link.zhihu.com/?target=https%3A//cosx.org/
[8]
统计学资源链接大全: 
https://link.zhihu.com/?target=http%3A//staff.ustc.edu.cn/~ynyang/stat-resources.html
[9]
该老师的主页: 
https://link.zhihu.com/?target=http%3A//staff.ustc.edu.cn/~ynyang
[10]
Trevor Hastie: 
https://link.zhihu.com/?target=http%3A//www-stat.stanford.edu/~hastie/
[11]
Jerome H. Friedman: 
https://link.zhihu.com/?target=http%3A//statweb.stanford.edu/~jhf/
[12]
Rob Tibshirani: 
https://link.zhihu.com/?target=http%3A//statweb.stanford.edu/~tibs/
[13]
顾凯: 
https://link.zhihu.com/?target=https%3A//www.bioinfo-scrounger.com/
[14]
revolutionanalytics: 
https://link.zhihu.com/?target=https%3A//blog.revolutionanalytics.com/
[15]
r-bloggers: 
https://link.zhihu.com/?target=https%3A//www.r-bloggers.com/
[16]
Statistics How To: 
https://link.zhihu.com/?target=https%3A//www.statisticshowto.com/
[17]
Statistical Modeling, Causal Inference, and Social Science: 
https://link.zhihu.com/?target=https%3A//statmodeling.stat.columbia.edu/
[18]
Error Statistics Philosophy: 
https://link.zhihu.com/?target=https%3A//errorstatistics.com/
[19]
Simply Statistics: 
https://link.zhihu.com/?target=https%3A//simplystatistics.org/
[20]
Jeff Leek: 
https://link.zhihu.com/?target=http%3A//www.biostat.jhsph.edu/~jleek/research.html
[21]
Roger Peng: 
https://link.zhihu.com/?target=http%3A//www.biostat.jhsph.edu/~rpeng/
[22]
Rafa Irizarry: 
https://link.zhihu.com/?target=http%3A//rafalab.dfci.harvard.edu/
[23]
FLOWINGDATA: 
https://link.zhihu.com/?target=https%3A//flowingdata.com/
[24]
Statistics by Jim: 
https://link.zhihu.com/?target=https%3A//statisticsbyjim.com/
[25]
Library Genesis: 
https://link.zhihu.com/?target=http%3A//libgen.rs/
[26]
亚马逊: 
https://link.zhihu.com/?target=http%3A//amazon.com/
[27]
Routledge: 
https://link.zhihu.com/?target=https%3A//www.routledge.com/
[28]
Chapman & Hall/CRC Texts in Statistical Science: 
https://link.zhihu.com/?target=https%3A//www.routledge.com/Chapman--HallCRC-Texts-in-Statistical-Science/book-series/CHTEXSTASCI
[29]
Chapman & Hall/CRC Biostatistics Series: 
https://link.zhihu.com/?target=https%3A//www.routledge.com/Chapman--HallCRC-Biostatistics-Series/book-series/CHBIOSTATIS
[30]
Springer: 
https://link.zhihu.com/?target=https%3A//www.springer.com/
[31]
Springer Statistics: 
https://link.zhihu.com/?target=https%3A//www.springer.com/gp/statistics
[32]
Elsevier: 
https://link.zhihu.com/?target=https%3A//www.elsevier.com/
[33]
Oxford University Press: 
https://link.zhihu.com/?target=https%3A//global.oup.com/academic/%3Fcc%3Dus%26lang%3Den%26
[34]
Probability & Statistics: 
https://link.zhihu.com/?target=https%3A//global.oup.com/academic/category/science-and-mathematics/mathematics/probability-and-statistics/%3Fcc%3Dus%26lang%3Den%26
[35]
Cambridge University Press: 
https://link.zhihu.com/?target=https%3A//www.cambridge.org/cn/academic
[36]
Statistics and probability: 
https://link.zhihu.com/?target=https%3A//www.cambridge.org/cn/academic/subjects/statistics-probability/
[37]
Bookdown: 
https://link.zhihu.com/?target=https%3A//bookdown.org/home/archive/
[38]
数据科学中的R语言: 
https://link.zhihu.com/?target=https%3A//bookdown.org/wangminjie/R4DS/
[39]
R语言忍者秘籍: 
https://link.zhihu.com/?target=https%3A//bookdown.org/yihui/r-ninja/
[40]
现代统计图形: 
https://link.zhihu.com/?target=https%3A//bookdown.org/xiangyun/msg/
[41]
Statistics Handbook: 
https://link.zhihu.com/?target=https%3A//bookdown.org/mpfoley1973/statistics/
[42]
R for Data Science: 
https://link.zhihu.com/?target=https%3A//bookdown.org/roy_schumacher/r4ds/
[43]
Hadley Wickham: https://link.zhihu.com/?target=http%3A//hadley.nz/
[44]
tidyverse: 
https://link.zhihu.com/?target=https%3A//www.tidyverse.org/packages/
[45]
Advanced R: 
https://link.zhihu.com/?target=https%3A//adv-r.hadley.nz/
[46]
Hadley Wickham: 
https://link.zhihu.com/?target=http%3A//hadley.nz/
[47]
习题解答: 
https://link.zhihu.com/?target=https%3A//advanced-r-solutions.rbind.io/
[48]
R Graphics Cookbook: 
https://link.zhihu.com/?target=https%3A//r-graphics.org/
[49]
Data Visualization with R: 
https://link.zhihu.com/?target=https%3A//rkabacoff.github.io/datavis/
[50]
R Gallery Book: 
https://link.zhihu.com/?target=https%3A//bookdown.org/content/b298e479-b1ab-49fa-b83d-a57c2b034d49/
[51]
The R Graph Gallery: 
https://link.zhihu.com/?target=https%3A//www.r-graph-gallery.com/
[52]
Beyond Multiple Linear Regression: 
https://link.zhihu.com/?target=https%3A//bookdown.org/roback/bookdown-BeyondMLR/
[53]
Applied longitudinal data analysis in brms and the tidyverse: 
https://link.zhihu.com/?target=https%3A//bookdown.org/content/ef0b28f7-8bdf-4ba7-ae2c-bc2b1f012283/
[54]
Interpretable Machine Learning: 
https://link.zhihu.com/?target=https%3A//christophm.github.io/interpretable-ml-book/
[55]
现代应用统计与R语言: 
https://link.zhihu.com/?target=https%3A//bookdown.org/xiangyun/masr/
[56]
R语言教程: 
https://link.zhihu.com/?target=https%3A//www.math.pku.edu.cn/teachers/lidf/docs/Rbook/html/_Rbook/index.html
[57]
统计计算: 
https://link.zhihu.com/?target=https%3A//www.math.pku.edu.cn/teachers/lidf/docs/statcomp/html/_statcompbook/index.html
[58]
零基础学R语言: 
https://link.zhihu.com/?target=https%3A//bookdown.org/qiyuandong/intro_r/
[59]
Rmd权威指南: 
https://link.zhihu.com/?target=https%3A//bookdown.org/yihui/rmarkdown/
[60]
Rmd中文指南: 
https://link.zhihu.com/?target=https%3A//bookdown.org/qiushi/rmarkdown-guide/
[61]
blogdown: 
https://link.zhihu.com/?target=https%3A//bookdown.org/yihui/blogdown/
[62]
bookdown: 
https://link.zhihu.com/?target=https%3A//bookdown.org/home/about/
[63]
Handbook of Biological Statistics: 
https://link.zhihu.com/?target=http%3A//www.biostathandbook.com/
[64]
An R Companion for the Handbook of Biological Statistics: 
https://link.zhihu.com/?target=https%3A//rcompanion.org/rcompanion/index.html
[65]
DataCamp: 
https://zhuanlan.zhihu.com/p/366590161/www.datacamp.com
[66]
Dataquest: 
https://link.zhihu.com/?target=https%3A//www.dataquest.io/
[67]
Datanovia: 
https://link.zhihu.com/?target=https%3A//www.datanovia.com/en/
[68]
Biomedical Data Science: 
https://link.zhihu.com/?target=http%3A//genomicsclass.github.io/book/
[69]
Introduction to Econometrics with R: 
https://link.zhihu.com/?target=https%3A//www.econometrics-with-r.org/
[70]
Forecasting: Principles and Practice (3rd ed): 
https://link.zhihu.com/?target=https%3A//otexts.com/fpp3/index.html
[71]
An Introduction to Statistical Learning(1 ed.): 
https://link.zhihu.com/?target=https%3A//www.statlearning.com/s/ISLRSeventhPrinting.pdf
[72]
官网: 
https://link.zhihu.com/?target=https%3A//www.statlearning.com/
[73]
The Elements of Statistical Learning: 
https://link.zhihu.com/?target=https%3A//web.stanford.edu/~hastie/ElemStatLearn/
[74]
Awesome R: 
https://link.zhihu.com/?target=https%3A//github.com/qinwf/awesome-R/blob/master/README.md
[75]
tidyverse: 
https://link.zhihu.com/?target=https%3A//www.tidyverse.org/packages/
[76]
tidymodels: 
https://link.zhihu.com/?target=https%3A//www.tidymodels.org/packages/
[77]
ggplot2: 
https://link.zhihu.com/?target=https%3A//ggplot2.tidyverse.org/
[78]
its 82 extensions: 
https://link.zhihu.com/?target=https%3A//exts.ggplot2.tidyverse.org/gallery/
[79]
shiny: 
https://link.zhihu.com/?target=https%3A//shiny.rstudio.com/
[80]
它的画廊: 
https://link.zhihu.com/?target=https%3A//shiny.rstudio.com/gallery/
[81]
plotly: 
https://link.zhihu.com/?target=https%3A//plotly.com/r/
[82]
htmlwidgets for R: 
https://link.zhihu.com/?target=https%3A//gallery.htmlwidgets.org/
[83]
R任务视图: 
https://link.zhihu.com/?target=https%3A//cran.r-project.org/web/views/
[84]
xaringan: 
https://link.zhihu.com/?target=https%3A//github.com/yihui/xaringan
[85]
英文模板: https://link.zhihu.com/?target=https%3A//slides.yihui.org/xaringan/
[86]
中文模板: 
https://link.zhihu.com/?target=https%3A//slides.yihui.org/xaringan/zh-CN.html
[87]
datesets: 
https://link.zhihu.com/?target=https%3A//stat.ethz.ch/R-manual/R-devel/library/datasets/html/00Index.html
[88]
Rdatasets: 
https://link.zhihu.com/?target=https%3A//vincentarelbundock.github.io/Rdatasets/articles/data.html
[89]
R官方文档: 
https://link.zhihu.com/?target=https%3A//www.r-project.org/other-docs.html
[90]
R贡献文档: 
https://link.zhihu.com/?target=https%3A//cran.r-project.org/other-docs.html
[91]
timeline-of-statistics.pdf: 
https://link.zhihu.com/?target=http%3A//www.statslife.org.uk/images/pdf/timeline-of-statistics.pdf
[92]
RStudio的cheatsheet: 
https://link.zhihu.com/?target=https%3A//www.rstudio.com/resources/cheatsheets/
[93]
DataCamp的cheatsheet: 
https://link.zhihu.com/?target=https%3A//www.datacamp.com/community/data-science-cheatsheets
[94]
UCB统计系推荐阅读清单: 
https://link.zhihu.com/?target=http%3A//sgsa.berkeley.edu/current_students/books/
[95]
ASA的统计学本科课程大纲: 
https://link.zhihu.com/?target=http%3A//www.amstat.org/education/pdfs/guidelines2014-11-15.pdf
[96]
Statistical Science Conversations: 
https://link.zhihu.com/?target=https%3A//imstat.org/journals-and-publications/statistical-science/conversations/
[97]
How R Helps Airbnb Make the Most of its Data: 
https://link.zhihu.com/?target=https%3A//www.tandfonline.com/doi/full/10.1080/00031305.2017.1392362
[98]
Why Is It Called That Way?! – Origin and Meaning of R Package Names: 
https://link.zhihu.com/?target=https%3A//www.statworx.com/en/blog/why-is-it-called-that-way-origin-and-meaning-of-r-package-names/

仅用于传递和分享更多信息,并不代表本平台赞同其观点和对其真实性负责,版权归原作者所有,如有侵权请联系我们删除。

编辑:于腾凯

校对:林亦霖

作为一名自学者,我认为好的电子书是不可或缺的,书中详细的解释和例子让我更容易消化复杂的概念。

我很推荐《R for Data Science》,它从基础开始,涵盖了数据处理的各种重要技巧,尤其对初学者友好。

《统计学习导论》是一本经典,无论你的背景如何,书中的内容都非常清晰,适合有一定基础的初学者。

我觉得在线课程和互动教程最有效,像DataCamp这样的课程能够动手实践,比光看书要有趣得多。

个人博客和论坛也很重要!从其他人的问题和经验中我常常能学到实际应用的技巧。

我使用VPN,比较稳定,推荐找一款负责任的服务商,避免数据泄露。

有时候我直接用浏览器的翻墙插件,虽然速度慢,但我觉得使用方便。

我之前找到了一些免费的科学上网方案,但还是不如付费的可靠。使用需要谨慎!

另一本不错的书是《智能数据分析》,它用案例驱动的方式,非常适合初学者上手。