1、Scaling Down 中提到的“核心功能模块提炼”具体应该如何操作?有没有一些实际的案例可以参考? 2、Scaling Out 提到的去中心化 AI 和区块链如何结合?区块链技术能为 AI 生态系统带来哪些好处? 3、文章提到的 TikTok 的例子,如何避免 Scaling Out 后的 AI Bots 生成低质量甚至有害的内容?
近年来, Scaling Up 指导下的 AI 基础模型取得了多项突破。从早期的 AlexNet、BERT 到如今的 GPT-4,模型规模从数百万参数扩展到数千亿参数,显著提升了 AI 的语言理解和生成等能力。然而,随着模型规模的不断扩大,AI 基础模型的发展也面临瓶颈:高质量数据的获取和处理成本越来越高,单纯依靠 Scaling Up 已难以持续推动 AI 基础模型的进步。
为了应对这些挑战,来自悉尼大学的研究团队提出了一种新的 AI Scaling 思路,不仅包括 Scaling Up(模型扩容),还引入了 Scaling Down(模型精简)和 Scaling Out(模型外扩)。Scaling Down 通过优化模型结构,使其更轻量、高效,适用于资源有限的环境,而 Scaling Out 则致力于构建去中心化的 AI 生态系统,让 AI 能力更广泛地应用于实际场景。
论文标题:AI Scaling: From Up to Down and Out
论文链接:https://www.arxiv.org/abs/2502.01677
该框架为未来 AI 技术的普及和应用提供了新的方向。接下来,本文将详细探讨这一框架如何推动 AI Scaling 从集中化走向分布式,从高资源消耗走向高效普及,以及从单一模型衍生 AI 生态系统。
Scaling Up: 模型扩容,持续扩展基础模型
Scaling Up 通过增加数据规模、模型参数和计算资源,使 AI 系统的能力得到了显著提升。然而,随着规模的不断扩大,Scaling Up 也面临多重瓶颈。数据方面,高质量公开数据已被大量消耗,剩余数据多为低质量或 AI 生成内容,可能导致模型性能下降。模型方面,参数增加带来的性能提升逐渐减弱,大规模模型存在冗余、过拟合等问题,且难以解释和控制。计算资源方面,训练和推理所需的硬件、能源和成本呈指数级增长,环境和经济压力使得进一步扩展变得不可持续。
尽管面临挑战,规模化扩展仍是推动 AI 性能边界的关键。未来的趋势将聚焦于高效、适应性和可持续性的平衡:
在 Scaling Up 和 Scaling Down 之后,文章提出 Scaling Out 作为 AI Scaling 的最后一步,其通过将孤立的基础模型扩展为具备结构化接口的专业化变体,将其转化为多样化、互联的 AI 生态系统。在该生态系统中,接口负责连接专业化模型与用户、应用程序和其他 AI 系统。这些接口可以是简单的 API,也可以是能够进行多轮推理和决策的 Agent。
通过结合基础模型、专用变体和接口,Scaling Out 构建了一个动态的 AI 生态系统,包含多个 AI 实体在其中交互、专业化并共同提升智能。这一生态促进了协作,能够实现大规模部署,并不断拓展 AI 的能力,标志着 AI 向开放、可扩展、去中心化的智能基础架构转变。
Scaling Up 是整个体系的基石,通过整合 TikTok 全球用户的多模态数据,开发出强大的多模态基础模型,为 Bots 提供内容生成、互动和创意的核心能力。然而,仅靠一个巨型模型难以满足多样化需求,Scaling Down 将基础模型的核心能力提炼为轻量化模块,使 AI Bots 能够高效、灵活地执行任务,降低计算成本并适应多样化场景部署。
最终,Scaling Out 将 TikTok 推向智能生态的全新高度。通过任务驱动的生成机制,平台能够快速扩展出数以万计的专用 Bots,每个 Bot 都针对特定领域(如教育、娱乐、公益)进行了深度优化。这些 Bots 不仅可以单独运行,还能通过协作网络共享知识,构建实时进化的内容网络,为用户提供无穷无尽的创意和互动体验。
挑战与机遇
此外,文中探讨了 AI Scaling 在跨学科合作、量化标准、开放生态、可持续性和公平性方面的机遇与难点。
AI Scaling 需要跨学科合作,结合认知科学、神经科学、硬件工程和数据科学,提升计算效率和适应性。同时,需要建立量化标准,例如评估模型大小、计算成本与性能的关系,为 AI 发展提供清晰的参考。
开放生态是 AI Scaling 发展的关键,轻量级核心模型和开放 API 可以促进 AI 在医疗、农业、工业等行业的落地应用。为了实现可持续发展,Scaling Down 通过轻量化 AI 减少能耗,Scaling Out 则通过分布式和多接口扩展,降低对数据中心的依赖,从而提升全球可及性。
最终,AI Scaling 将为通用人工智能(AGI)奠定基础。Scaling Up 提供基础知识,Scaling Down 提高适应性,Scaling Out 构建开放、去中心化的 AI 生态系统,该系统中的不同接口相互协同,共同应对复杂挑战。