OpenAI 模型家族更新:GPT-4 训练数据至 2023 年 12 月

作者|核子可乐、褚杏娟

近日,OpenAI 宣布 GPT-3.5-turbo、GPT-4 以及 GPT-4-turbo-preview 等均指向最新模型版本。用户可以发送请求并查看响应对象来验证自己正在使用哪种模型。响应结果中包含所使用的特定模型版本(例如 GPT-3.5-turbo-0613)。

OpenAI 还提供静态模型版本,开发人员可以在模型更新发布后的三个月内继续使用原有模型。随着模型更新的加快,OpenAI 还开放了评估贡献通道,由用户针对不同用例协同进行模型改进。

感兴趣的朋友请参阅 OpenAI Evals repo:

https://github.com/openai/evals

关于弃用模型的更多详细信息,请参阅 OpenAI 官网上的弃用页面:

https://platform.openai.com/docs/deprecations

GPT-4 与 GPT-4 Turbo

GPT-4 是一套大型多模态模型(可接收文本或图像输入,并输出文本结果),目前通过 OpenAI API 向付费客户开放。

与 GPT-3.5-turbo 一样,GPT-4 针对聊天进行了优化,因此可通过聊天完成以往必须借助 Chat Completions API 才能处理的任务。OpenAI 在文本生成指南中专门介绍了如何使用 GPT-4:

https://platform.openai.com/docs/guides/text-generation


对于大部分基本任务,GPT-4 和 GPT-3.5 模型间的差异并不明显。但在需要较复杂推理能力的情况下,GPT-4 则拥有超越 OpenAI 此前各类模型的表现。

GPT-3.5 Turbo

GPT-3.5 Turbo 模型能够理解并生成自然语言或者代码,针对 Chat Completions API 进行了聊天优化,但也同样适用于非聊天任务。


DALL·E

DALL-E 是一套 AI 系统,能够根据自然语言的描述创建出逼真的图像与艺术效果。DALL-E 3 目前支持根据提示词生成拥有特定尺寸的新图像。DALL-E 2 还支持对现有图像进行编辑、或为用户上传的图像生成变体等功能。

DALL-E 3 可通过 OpenAI 的 Images API 同 DALL-E 2 配合使用。用户可通过 ChatGPT Plus 服务体验 DALL-E 3。

TTS

TTS 是一种 AI 模型,能够将文本转换为听感自然顺畅的语音。OpenAI 提供两种不同模型变量,其中 tts-1 针对实时文本到语音用例进行了优化,tts-1-hd 则针对输出质量进行了优化。这些模型均可通过 Audio API 中的 Speech 端点配合使用。

Whisper

Whisper 是一种通用语音识别模型,在包含多种音频的大型数据集上训练而成。它也是一套多任务模型,能够执行多语种语音识别、语音翻译与理解等任务。Whisper v2-large 模型目前可通过 API 调用,模型名称为 Whisper-1。

目前,Whisper 的开源版本与 OpenAI 通过 API 提供的版本完全一致。但 API 版本的推理过程经过优化,因此 Whisper 在 API 上的运行速度要比其他方式快得多。

关于 Whisper 的更多技术细节,请参阅此论文:

https://arxiv.org/abs/2212.04356

Embeddings

Embeddings 是指文本的数字表示,可用于衡量两段文本之间的相关性。Embeddings 即嵌入,往往在搜索、聚类、推荐、异常检测和分类任务中拥有良好表现。

感兴趣的朋友可以在 OpenAI 的公告博文中了解关于最新嵌入模型的更多信息:

https://openai.com/blog/new-embedding-models-and-api-updates


Moderation

Moderation 审核模型负责检查内容是否符合 OpenAI 的使用政策。这些模型提供分类功能,用于查找以下类别的内容:仇恨、仇恨 / 威胁、自残、性、性 / 未成年人、暴力及暴力 / 图像。

更多具体信息请参阅 OpenAI 审核指南:

https://platform.openai.com/docs/guides/moderation/overview

审核模型可接受任意大小的输入,将输入自动拆分成 4096 个 tokens 的块。如果总输入超过 32768 个 tokens,则使用截断技术处理。在极少数情况下,此类模型可能会在审核检查中忽略少量 tokens。

每条指向审核端点的请求仅显示各类别的最大值。例如,如果一个 4k tokens 块的分类得分为 0.9901,而另一个块的得分为 0.1901,则 API 响应结果将仅显示明显更高的 0.9901。


GPT base

GPT base 模型能够理解并生成自然语言或者代码,但并未接受指令遵循方面的训练。这些模型旨在替代 OpenAI 之前的 GPT-3 base 基础模型,且使用旧版 Completions API。OpenAI 推荐大多数用户直接使用 GPT-3.5 或者 GPT-4。


使用政策

在用户数据处理上,OpenAI 强调用户数据始终归用户所有。

自 2023 年 3 月 1 日起,发送至 OpenAI API 的数据将不会被用于训练或改进 OpenAI 模型(除非用户明确表示同意 )。但若选择参与改进,那么模型可能随时间推移更加契合的用例。

为了帮助识别滥用行为,API 数据最多可保留 30 天,之后将被删除(除非法律另行要求)。对于用例较为敏感的可信客户,OpenAI 亦提供零数据保留选项。在零数据保留情况下,请求与响应主体不会被持久保存在任何日志记录当中,而仅放置在内存内以支持服务需求。请注意,此数据政策不适用于 OpenAI 提供的非 API 消费级服务,例如 ChatGPT 或 DALl-E Labs。

端点默认使用政策
  • 通过 GPT-4-vison-preview 模型输入的图像不符合零保留条件。

  • 对于 Assistants API,OpenAI 仍在 beta 期间评估默认保留周期。预计 beta 结束后将确定沿用默认的保留周期。


关于更多详细信息,请参阅 OpenAI 的 API 数据使用政策:
https://openai.com/policies/api-data-usage-policies
模型端点兼容性
此列表不包含已被 OpenAI 弃用的各模型版本:
https://platform.openai.com/docs/deprecations

相关链接:

https://platform.openai.com/docs/models/GPT-4-and-GPT-4-turbo
声明:本文为 InfoQ 翻译整理,未经许可禁止转载。

今日荐文




图片

你也「在看」吗? 👇